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Abstract

[28] We discuss two influential views of unification: mutual information
unification (MIU) and common origin unification (COU). We propose a
simple probabilistic measure for COU and compare it with Myrvold’s
(2003; 2017) probabilistic measure for MIU. We then explore how well
these two measures perform in simple causal settings. After highlighting
several deficiencies, we propose causal constrains for both measures. A
comparison with explanatory power shows that the causal version of COU
is one step ahead in simple causal settings. However, slightly increas-
ing the complexity of the underlying causal structure shows that both
measures can easily disagree with explanatory power. The upshot of this
is that even sophisticated causally constrained measures for unification
ultimately fail to track explanatory relevance. This shows that unification
and explanation are not as closely related as many philosophers thought.
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1 Introduction

A hypothesis’ ability to unify and systematize different and diverse pieces of
evidence is generally seen as an epistemic virtue in philosophy of science. Uni-
fication is also often associated with other core concepts of philosophy of sci-
ence such as abduction, confirmation, causation, prediction, and explanation.
In this paper, we bracket abduction, confirmation, and prediction and rather
focus on two different views of unification and their connection to explanation
from a causal perspective. Taking such a causal perspective will allow us to see
that causal structure matters for how probabilistic measures of unification per-
form and relate to explanatory relevance. Many philosophers of science hold
the view that the better a hypothesis h unifies a body of evidence e1, . . . , en,

[*][This text is published under the following bibliographical data: Gebharter, Alexander and
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tive”. In: Studies in History and Philosophy of Science 99, pp. 28–36. DOI: 10.1016/j.shpsa.2022.
12.005. All page numbers of the published text are in square brackets. The final publication is
available at https://doi.org/10.1016/j.shpsa.2022.12.005. For more information about the
underlying project, please have a look at http://cjf.escamilla.academia.name.]
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the better it can explain it. So, for example, unification in the general con-
text of explanation is discussed by Kneale (1949, pp.91f), Hempel (1965, p.444),
and Friedman (1974). For a discussion of the latter, see, for example, J. Wood-
ward (2003). Also, Whewell’s (1840/2014) consilience is sometimes considered
a form of unification. Some even go as far as proposing that explanation can
be reduced to unification (see, e.g., Kitcher 1981, 1989). In this paper, however,
we rather focus on the more general question of whether unification is a good
indicator for explanatory relevance.

Which account of unification gets things right and how exactly unificatory
power can be measured is still controversial. In this paper, we are especially
interested in the following two prominent approaches to unification:

Mutual information unification (MIU): A hypothesis h has more unificatory
power with respect to pieces of evidence e1, . . . , en the more it renders
these pieces of evidence (more) informative about each other.

Common origin unification (COU): A hypothesis h unifies a body of evidence
e1, . . . , en in so far as it posits a common origin for these pieces of evi-
dence.

MIU has been defended by Myrvold (2003, 2017), and COU by Lange (2004).
Both authors have criticized each other’s account. Myrvold (2017) stressed that
according to a Bayesian decomposition, only “MIU contributes to incremen-
tal evidential support, and that there is no scope, within Bayesian updating,
for COU to add to the evidential support of the theory” (p. 93). And Lange
(2004) claimed that “genuinely to unify [pieces of evidence], a theory must re-
veal them to have some deep common explanatory basis” (p. 208) and that
Myrvold’s account is inadequate because it “sets the bar too low to distinguish
genuine from bogus unification” (ibid.). So, whereas Myrvold claims that COU
is inadequate in terms of confirmation, Lange claims that MIU is inadequate in
terms of explanation. Against Myrvold’s claim about COU, Niiniluoto (2016)
argued that COU also plays an important role for confirmation if more broadly
conceived as including abductive confirmation. [29] However, Niiniluoto’s ob-
servation does not automatically make COU a better candidate to account for
the different roles typically associated with unification.

The main goal of this paper is to shed new light on how MIU and COU
relate to explanation.1 To this end, we take a causal perspective which, as we
will see, makes it easier to explore how well the two measures perform when it
comes to indicating explanatory relevance. We draw on Reichenbach’s (1956)
insight that common causes screen off their effects (or render them less infor-
mative about each other in the presence of additional causal connections) that
has become a crucial assumption in causal modeling. Based on this simple

1We acknowledge that Myrvold (2017) makes it clear that, according to MIU, a hypothesis can
unify a body of evidence without explaining it. But we believe that it is nevertheless an interesting
project to examine whether MIU or a modification of it more suitable for causal settings might
provide a measure of explanatory unification, especially since MIU’s lack of tracking explanatory
relevance was one of Lange’s (2004) main objections against MIU.
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idea, we propose a probabilistic measure for COU that in some sense comple-
ments Myrvold’s probabilistic measure for MIU: According to this first proba-
bilistic take on COU, a hypothesis has the more unificatory power the more it
renders pieces of evidence uninformative about each other. As a next step, we
will use causal Bayesian networks (Pearl 2000; Spirtes, Glymour, and Scheines
1993) to represent different patterns of how a hypothesis can be causally con-
nected to a body of evidence. As we will see, already focussing on the simplest
causal patterns suffices to make some relevant observations. We apply Myr-
vold’s (2003; 2017) measure for MIU and our novel take on measuring COU to
each of these structures. The upshot of this will be that causal structure heav-
ily constrains the performance of these probabilistic measures. Next, we use
the basic causal structures and our results about how the measures for MIU
and COU behave to shed new light on the connection of unification and expla-
nation in causal settings. It will turn out that both probabilistic measures of
unification do a bad job as indicators for explanatory power. While the mea-
sure for MIU underperforms when applied to the elementary causal structures
we discuss, the probabilistic measure for COU is too permissive. Based on this
observation, we further develop the probabilistic measures for MIU and COU
by adding a causal constraint. We then compare the modified measures in the
context of the elementary causal structures again. On first glance, COU will
seem to have the upper hand, but, as we will see, increasing the complexity of
the underlying causal structure only slightly can mess things up easily. This
shows that even sophisticated and causally constrained measures for unifica-
tion ultimately fail to track explanatory relevance. The upshot of this is that
unification and explanation do not go hand in hand: They are not as closely
related as authors such as Kitcher (1981, 1989) and Lange (2004) proposed.

The structure of the paper is as follows: In section 2, we introduce Myr-
vold’s (2003; 2017) measure for MIU. We then propose a complementary prob-
abilistic measure for COU and discuss its relation to Myrvold’s measure. In
section 3, we investigate how these measures for MIU and COU perform given
different elementary causal structures. In section 4, we explore what we can
learn from our earlier results about the relation between unification and expla-
nation and how we could try to account for these insights by adding a causal
constraint to our probabilistic measure for COU and how this causal measure
for COU performs compared to a similarly modified version of the measure for
MIU. It will turn out that though adding these causal constraints increases the
performance of both causal measures in the elementary structures discussed
so far, the causal COU-measure takes the upper hand. In section 5, however,
we show that even the causal version of the COU-measure fails as an indicator
for explanatory relevance once one increases the complexity of the underlying
causal structure only slightly. We conclude in section 6. For the proofs of the
observations made throughout the paper, see the Appendix.
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2 Two kinds of unification and two probabilistic
measures

In this paper, we are interested in two prominent but somewhat opposed views
of unification. According to the more classical view (COU), unification consists
in identifying a common origin of the pieces of evidence to be unified. COU
has been prominently defended by authors such as Lange (2004) and Janssen
(2002). The other view (MIU) says that unification consists in rendering pieces
of evidence informative (or more informative) about each other. It has been
prominently defended by Myrvold (2003, 2017).2

Before introducing Myrvold’s (2003; 2017) measure, let us illustrate the ba-
sic idea by means of an intuitive example: Let us assume that the price of a
good on the market is determined by supply and demand. More precisely,
we suppose that it is very likely for a good to have a high price if demand is
very high and supply is very low. To the background of any other combina-
tion of supply and demand, in contrast, a high price is way less likely. Now
assume that the price of a certain good is comparably high. In this situation we
can infer that if supply is very low, then it is more likely that demand is very
high (and vice versa). Thus, the price being high would render low supply
and high demand more informative about each other. If the hypothesis says
that a good’s price is high and low supply and high demand are the pieces
of evidence, then, according to MIU, the hypothesis would unify the body of
evidence.

Myrvold (2003; 2017) defines the notion of mutual information between
two pieces of evidence e1 and e2 that is involved in this form of reasoning as
follows:3

Definition 2.1 (mutual information and relative mutual information).

I(e1, e2) = log2

(
Pr(e1, e2)

Pr(e1) · Pr(e2)

)
I(e1, e2|h) = log2

(
Pr(e1, e2|h)

Pr(e1|h) · Pr(e2|h)

)
The pieces of evidence e1 and e2 are independent if Pr(e1, e2) = Pr(e1) ·

Pr(e2). Since Pr(e1, e2) is compared to the product Pr(e1) · Pr(e2) in Defini-
tion 2.1, a positive value of I(e1, e2) indicates that the pieces of evidence are

2A similar account has been put forward by McGrew (2003). Schupbach (2005) showed that
both accounts are ordinally equivalent, so we can bracket McGrew’s account for our endeavor.

3Throughout the paper we focus on the simplest case only involving two pieces of evidence.
Also note that we leave the specific interpretation of probabilities open. They can be interpreted
objectively, for example as capturing the true regularity patterns as they appear in the Humean
mosaic or as limiting frequencies of observed regularities. They can also be interpreted subjec-
tively as credences of an agent or a group of agents such as a scientific community. Also the causal
settings which we will introduce later on are best interpreted in accordance to one’s interpretation
of probabilities: Objective interpretations of causation go best with an objective interpretation of
probabilities while subjective ones are best associated with a view of causation as a purely concep-
tual tool useful for structuring data.
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positively dependent and a negative value stands for negative dependence,
where the logarithm shifts the neutral case to 0. Likewise for relative mutual
information I(e1, e2|h).

Now, Myrvold (2003, 2017) suggests to identify the degree to which a hy-
pothesis unifies pieces of evidence according to MIU with the following differ-
ence: [30]4

Definition 2.2 (mutual information unification).

MIU(e1, e2; h) = I(e1, e2|h)− I(e1, e2)

The idea here is, again, that a unifying hypothesis increases the amount
of mutual information between the pieces of evidence it unifies. Accordingly,
MIU > 0 indicates positive unificatory power, MIU < 0 indicates negative
unificatory (or disunificatory) power, and MIU = 0 indicates no unificatory
power at all.

While Myrvold (2003, 2017) suggested a measure for MIU, there is still no
measure for the unificatory power of a hypothesis according to COU on the
market. So how could COU be measured? As Niiniluoto (2016) remarks, one
kind of common origin is a common cause that comes with a specific prob-
abilistic property: It screens off its effects (if no other causal relations are
around).5 Niiniluoto identifies this screening off property as the central fea-
ture underlying COU. Taking this observation as a starting point, we suggest
the following quite intuitive basic idea for measuring COU in terms of prob-
abilities: Two pieces of evidence e1 and e2 accounted for by some hypothesis
h are the more unified by h, the more of the dependence between e1 and e2
is reduced by assuming h. In other words: h has the more unificatory power
w.r.t. e1 and e2 the more of the dependence between e1 and e2 can actually be
accounted for in terms of h.

Let us illustrate the basic idea, again, by help of a simple example. Assume
that we are interested in the hypothesis that a patient suffers from an influenza.
We are observing two typical symptoms: headache and fever. If the patient has
a headache, then also the probability for fever will be higher, and vice versa.
But if we learn that the patient actually suffers from an influenza, both symp-
toms as well as why they are correlated can be explained by that fact, meaning
that the hypothesis that the patient suffers from an influenza will render the
two pieces of evidence less informative about each other.

Based on the simple intuitive idea above, we propose—as a first take on
COU—a probabilistic measure:6

4Actually, Myrvold (2003, 2017) proposes several different but interrelated measures for MIU
and connects them to different measures of confirmation. Since we are not interested in the re-
lation to confirmation in this paper, we will focus on one of these measures only. Also note that
“MIU” refers to the measure for mutual information unification while “MIU” refers to the account;
likewise for common origin unification.

5Other kinds of common origin that share this screening off property with common causes are
common supervenience bases (Gebharter 2017a), common constituents (Gebharter 2017b, 2022)
and common grounds (Schaffer 2016).

6At this point we would once again like to stress that this measure is not Lange’s (2004), but
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Definition 2.3 (common origin unification).

COU(e1, e2; h) = I(e1, e2)− I(e1, e2|h)

Again, the idea is that COU(e1, e2; h) measures how much of the depen-
dence between e1 and e2 is reduced by h in probabilistic terms. The higher
COU is (given a positive value), the more of the probabilistic dependence be-
tween e1 and e2 can be accounted for by h. If COU is zero, h does not have any
unificatory power, and if it is negative, h disunifies e1 and e2.

Since MIU and COU are about opposed probabilistic phenomena, it is no
wonder that their respective probabilistic measures MIU and COU are also
opposed:

Observation 2.1.
COU(e1, e2; h) = −MIU(e1, e2; h)

As we will see in section 4, the relation between unificatory and explana-
tory power can be discussed most efficiently in terms of inequalities, for which
reason we also state the relations between MIU and COU in terms of the fol-
lowing equations:

Observation 2.2.

If MIU(e1, e2; h) > 0, then COU(e1, e2; h) < 0. (1)
If MIU(e1, e2; h) < 0, then COU(e1, e2; h) > 0. (2)

MIU(e1, e2; h) = COU(e1, e2; h) iff I(e1, e2) = I(e1, e2|h). (3)

These equations nicely illustrate the idea that MIU and COU are two op-
posite views of unification: If a hypothesis h does unify according to MIU,
then it disunifies according to COU (Equation 1), and the other way round: If
h disunifies according to MIU, then it unifies according to COU (Equation 2).
Finally, the only case in which the measures agree is the case when h has no
influence at all on the amount of information that e1 and e2 bear on each other
(Equation 3). In this case, both measures are zero.

our reconstruction of Lange’s COU account based on Niiniluoto’s (2016) analysis. One might be
worried that measuring unificatory power in terms of screening off is an implausible strategy
right from the start since, as Sober (1988, ch. 3) argues, separate-cause explanations can screen
off as much as common cause explanations. Assume, for example, a patient has headache and
fever. Assume further that there are three different diseases: A causes headache but not fever, B
causes fever but not headache, and C causes both symptoms. Now, conditioning on A&B screens
headache and fever as much off as conditioning on the common cause C. We believe, however, that
such an analysis is far from being a knock-down argument against screening off as a measure for
COU. Just to mention one problem, neither A, B, nor the conjunction A&B classifies as an origin
in any ordinary meaning of that word. (Labeling A&B a single origin of headache and fever is
nothing over and above a logical trick.) But COU is all about unifiying a body of evidence in terms
of a single origin rather than in terms of several independent origins.
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3 Unification and causation

In section 2, we motivated our probabilistic measure for COU on the basis of
the observation that many (or even all) common origins behave like common
causes: They screen off their effects. Note, however, that both measures, MIU
as well as COU, are purely probabilistic in nature; so far no causal consid-
erations or any specific constraints about other types of common origin have
been built into these measures. In this section, we explicitly turn to causal set-
tings. In such settings hypotheses and pieces of evidence can stand in all kinds
of causal relationships to each other. By taking this causal stance we follow
Wheeler and Scheines (2013) who claim that “it is necessary to take into con-
sideration the causal structure that might regulate the relationships between
evidence and a hypothesis” (p. 157).

Again we focus on the most simple case involving one hypothesis and two
pieces of evidence. In particular, we will consider all the basic possibilities
how a single hypothesis and two pieces of evidence can be causally connected
and then explore how MIU and COU perform in these causal structures. We
represent causal structures as causally interpreted Bayesian networks (CBNs).
A CBN is a structure ⟨V, E, Pr⟩ in which V is a set of random variables, E is a
set of directed edges (−→) connecting variables in V, and Pr is a probability
distribution over V. Like all Bayesian networks, CBNs conform to the Markov
factorization

Pr(x1, . . . , xn) =
n

∏
i=1

Pr(xi|par(Xi)), (4)

where Par(Xi) stands for the set of a variable Xi’s parents—i.e., the set of vari-
ables Xj such that Xj −→ Xi is in E—and par(Xi) for the instantiation of the
variables in Par(Xi) to some values. The CBN formalism (Pearl 2000; Spirtes,
Glymour, and Scheines 1993) can be seen as a theoretical generalization of Re-
ichenbach’s (1956) insight: One implication of the fact that CBNs adhere to the
Markov factorization is that the effects of common causes become independent
when conditionalizing on these common causes (given no other causal connec-
tions are around).

In the following, we will represent the hypothesis and the two pieces of
evidence with the binary variables H, E1, and E2, respectively. H’s value h
stands for the truth of the hypothesis and h̄ for its falsity. The value ei of Ei
(with i ∈ {1, 2}) stands for the fact that the event constituting a piece of ev-
idence occurs and ēi for the fact that it does not occur. We limit ourselves to
positive probability distributions and to cases where pieces of evidence are in-
dependent or depend positively on each other. [31] Since e1 and e2 are pieces of
evidence for a hypothesis h, we assume that e1 and e2 both depend positively
on the hypothesis h, which is a quite typical assumption about the relation of
hypothesis and evidence (cf. Bovens and Hartmann 2003):

Pr(e1|h) > Pr(e1|h̄) (5)

Pr(e2|h) > Pr(e2|h̄) (6)
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Now, there are 24 possible elementary patterns how the three variables H, E1,
and E2 can be connected by two directed edges. Having a look at these most
basic causal structures as listed in Table 1 will give us a good idea how causal
structure constrains the performance of the measures.

H ←− E1 −→ E2 H −→ E1 −→ E2 H ←− E1 ←− E2 H −→ E1 ←− E2
H ←− E2 −→ E1 H −→ E2 −→ E1 H ←− E2 ←− E1 H −→ E2 ←− E1
E1 ←− H −→ E2 E1 −→ H −→ E2 E1 ←− H ←− E2 E1 −→ H ←− E2
E2 ←− H −→ E1 E2 −→ H −→ E1 E2 ←− H ←− E1 E2 −→ H ←− E1
E1 ←− E2 −→ H E1 −→ E2 −→ H E1 ←− E2 ←− H E1 −→ E2 ←− H
E2 ←− E1 −→ H E2 −→ E1 −→ H E2 ←− E1 ←− H E2 −→ E1 ←− H

Table 1: List of all possible elementary patterns connecting H, E1, E2.

Only the six structures in black are relevant for our endeavor. Grey struc-
tures are irrelevant for at least one of the following reasons: (i) They are iden-
tical to black structures from a graph-theoretic perspective.7 (ii) They only dif-
fer from black structures because E1 and E2 swapped places, which will make
no difference for the performance of the measures. (iii) They are excluded by
Equations 5 and 6. We thus arrive at the six elementary structures in Figure 1.

E1 H E2 (a)
E1 H E2 (b)

H E1 E2 (c)

E1 E2 H
(d)

H E1 E2 (e)
E1 H E2 (f)

Figure 1: Elementary causal structures connecting H, E1, and E2

With the assumptions made earlier in place we can now apply the measures
MIU and COU to the six basic structures in Figure 1. If we do that, we arrive
at the following somewhat surprising finding:

Observation 3.1.

MIU(e1, e2; h) < 0 < COU(e1, e2; h) for structures (a)–(e).
MIU(e1, e2; h), COU(e1, e2; h) are lesser, equal, or greater 0 for structure (f).

While MIU underperforms8 by indicating disunification in the basic struc-
tures (a)–(e), COU is way too permissive by indicating unificatory power in all

7For example, H −→ E1 −→ E2 and E2 ←− E1 ←− H formally represent the same graph
G = ⟨V, E⟩, where V = {H, E1, E2} is G’s set of vertices and E = {⟨H, E1⟩, ⟨E1, E2⟩} is G’s set of
directed edges.

8We bracket Myrvold’s (2017) proposal to cover Reichenbachian common cause hypotheses
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of these structures. The paradigmatic case of COU advocates such as Lange
(2004) have in mind is clearly the one in Figure 1(a). But not only the com-
mon cause case can provide unificatory power according to COU. Another
interesting case is (c) in which the hypothesis directly causes one piece of ev-
idence which then directly causes the other piece of evidence. This case has
not been explicitly considered by Lange. In some sense the hypothesis can,
however, still be considered as a common origin of both pieces of evidence,
namely in the sense that it causes one via causing the other. Also interesting is
the structure in (b). Though the hypothesis is clearly not a common origin of
the two pieces of evidence, it has unificatory power according to the basic idea
underlying COU that a hypothesis’ unificatory power consists in the amount
of informativeness the pieces of evidence bear on each other reduced by the
hypothesis. Even more extreme are (d) and (e). Though the hypothesis is not
even an origin of one of the pieces of evidence, it still has unificatory power
according to the probabilistic measure COU.

Finally, (f) is also interesting because this is then the only case in which
both MIU and COU can be positive. Their behavior depends on the specific
way the causes E1, E2 interact with each other in bringing about the effect H. If,
for example, each piece of evidence alone makes the hypothesis highly proba-
ble, then conditioning on h will render e1 and e2 negatively dependent on each
other. Thus, MIU will be negative and COU will be positive. If, on the other
hand, e1 and e2 are both required to increase h’s probability, then conditioning
on h will render e1 and e2 positively dependent. Hence, MIU will be positive
and COU will be negative. Finally, both measures can also be 0. Like for struc-
tures (d) and (e), the result about structure (f) is bad news for COU since it can
be positive though the hypothesis is not even an origin of one of the two pieces
of evidence. For exemplary probability distributions, see the Appendix.

The upshot of our investigation so far is that causal structure crucially con-
strains the performance of the probabilistic measures for unificatory power
in unexpected ways. As outlined before, Lange (2004) thinks that one of the
most important virtues of a hypothesis that unifies according to COU is its
purported ability to also explain the body of evidence it unifies. In the next
section, we will see in detail in which elementary causal scenarios a hypoth-
esis’ ability to unify does actually indicate its explanatory relevance. We will
then take this as a basis for adding a causal constraint to COU that brings it
closer to Lange’s original understanding of COU and makes it more suitable
for the application to the simple causal settings considered so far.

as instances of MIU in this paper. In a nutshell, Myrvold suggests that such hypotheses should
be considered as postulating a common cause. Accordingly, one would have to compare two
models: One with H and one without H. Adding H as a common cause would, however, render
e1 and e2 more informative about each other only if adding H adds something to the positive
dependence between e1 and e2. This means, in turn, that the distribution over {E1, E2} needs to
be different in the two models, which seems artificial and a bit ad hoc to us. In the end, it is
the specific dependence between e1 and e2 (in the actual world) that should be accounted for by
introducing the hypothesis. Introducing the hypothesis should explain and not change the actual
dependence between e1 and e2. A more detailed investigation of Myrvold’s strategy must await
another occasion.

9



4 Unification and explanation

There are many different measures for explanatory power currently on the
market. For an overview see, for example, (Sprenger and Hartmann 2019).
Basically all of these measures are probabilistic difference-making measures,
meaning that their output increases the more the hypothesis increases the body
of evidence’s probability. Because of this, we can choose any of these measures
as a proxy. For our further investigation we choose Schupbach and Sprenger’s
(2011) measure. However, the results we provide also hold for any other prob-
abilistic difference-making measure. Their measure is as follows:

EXP(e; h) =
Pr(h|e)− Pr(h|ē)
Pr(h|e) + Pr(h|ē)

Note that this measure (as well as related measures) are purely probabilistic
and, at least in their standard form, not yet suitable for causal settings. In
causal settings, explanation is typically assumed to track causation in order
to account for explanatory asymmetries (cf. J. Woodward 2003). One of the
paradigmatic examples to illustrate this point is about the solar altitude being
causally relevant for the length of a flagpole’s shadow, but not the other way
round. The two phenomena are probabilistically dependent since a lower so-
lar altitude results in a longer shadow than a higher one does. Let us choose
h to stand for low solar altitude or long shadow and e for the other of the two
factors. Regardless of how we choose, EXP(e; h) will always be positive since
each factor is a positive probabilistic difference-maker for the other one. How-
ever, while pointing to the low solar altitude results in a good explanation for
the long shadow, the other way round does not. The simple reason for this is
that causes can explain their effects, but not vice versa.

To get a measure for explanatory power suitable for causal settings,
one needs to guarantee that explanation tracks causation. For the classical
difference-making measures, this can be achieved with the help of the tech-
nical notion of an ideal intervention (see, e.g., Pearl 2000; Sprenger 2018). Re-
cently, Eva and Stern (2019) have proposed such a modification for the Schup-
bach and Sprenger (2011) measure. [32] The classical probabilistic measures
as well as Eva and Stern’s (2019) measure capture the intuition that explana-
tory power consists in the hypothesis’ ability to increase the body of evidence’s
probability. Explanatory power can, however, also be understood in terms of
answering what-if-things-had-been-different questions or w-questions (Hitchcock
and J. F. Woodward 2003; J. F. Woodward and Hitchcock 2003): The greater the
range of w-questions a hypothesis can answer, the more explanatory power it
has. A measure that captures this idea has recently been proposed by Gebhar-
ter and Eronen (forthcoming). However, since probabilistic difference-making
measures such as Eva and Stern’s modification of the Schupbach and Sprenger
(2011) measure are closer to the more traditional unification debate, we go for
this measure in this paper. In particular, we use a simplified version of their
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account:9

CEXP(e; h) =
Pr(ĥ|e)− Pr(ĥ|ē)
Pr(ĥ|e) + Pr(ĥ|ē)

(7)

e stands short for the whole body of evidence to be explained. In our case, this
means that e stands for e1, e2 and that ē stands for e1, ē2 ∨ ē1, e2 ∨ ē1, ē2. The hat
symbol above h stands for an intervention that decouples H from the proba-
bilistic influence of its causes. Decoupling H from the influence of its causes
allows for isolating the probabilistic influence of h on e (and, vice versa, the
probabilistic influence of e on h) that arises because H is a cause of E. Un-
der such an intervention all the possible probabilistic influence the hypothesis
might have on the body of evidence (and vice versa) over other paths (e.g.,
paths featuring a common cause of both the hypothesis and the evidence) is
ignored. Considering only the probabilistic influence due to directed paths
from the hypothesis to the evidence allows CEXP to track causation. In par-
ticular, the post intervention distribution used in CEXP can be computed by
applying the Markov factorization (Equation 4) to the truncated structures one
gets from the basic structures in Figure 1 by deleting all the arrows pointing at
H. We assume that the post intervention distribution over H is identical to the
pre intervention distribution.10 The post intervention structures are depicted
in Figure 2.

E1 H E2 (a)
E1 H E2 (b)

H E1 E2 (c)

E1 E2 H
(d)

H E1 E2 (e)
E1 H E2 (f)

Figure 2: Structures resulting from Figure 1 by intervening on H

Given the assumptions made earlier, we can now draw the following con-
clusions for our basic causal structures in Figure 1:

9Nothing hinges on that particular choice. The other classical probabilistic difference-making
measures on the marked can be transformed into causal measures in the same way and the results
we provide also hold for their causal versions. Thus, we use Eva and Stern’s (2019) measure as a
proxy for any causal interpretation of a probabilistic difference-making measure in this paper.

10When performing a classical intervention on H, one typically sets H to a particular value h
in addition to deleting all the incoming arrows (cf. Pearl 2000). Such interventions are useful for
computing the effect the particular value h would have on the body of evidence. Our goals in this
paper are different. Because we want to compute CEXP, we need to assess the probabilistic impact
of e on h that arises because H is a cause of E. To this end, we must allow for H to change its value
after the intervention.
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Observation 4.1.

CEXP(e; h) > 0 for structures (a)–(c).
CEXP(e; h) = 0 for structures (d)–(f).

This result has the following bearing on MIU and COU: Both probabilistic
measures do a bad job as indicators for explanatory power. As we saw earlier,
MIU is negative for the elementary causal settings (a)–(e). So while MIU cor-
rectly indicates a lack of explanatory power for structures (d) and (e), it fails
to indicate positive explanatory power for structures (a)–(c). And as we saw
earlier, MIU can be positive for structure (f) though h cannot have any ex-
planatory power w.r.t. e in this structure. This can be seen as supporting Lange
(2004) who claimed that MIU cannot account for explanation. But what about
COU? Does it fare any better? The elementary cases in which h unifies accord-
ing to COU but does not have any explanatory power are (d) and (e). Here,
h cannot even explain one of the pieces of evidence. If H, E1, and E2 are con-
nected as in (a), (b), or (c), on the other hand, unificatory power according to
COU goes hand in hand with explanatory power. A somewhat special case is
(b). Here h can unify the body of evidence, but cannot explain the whole body
of evidence. In this case h has, strictly speaking, only explanatory relevance
w.r.t. e2, but cannot help in any way to explain e1. Finally, COU can be positive
for structure (f) though h cannot have any explanatory power w.r.t. e in this
particular setting. Summarizing, MIU indicates too many false negatives (i.e.,
a lack of explanatory power where there is one), whereas COU indicates too
many false positives (i.e., explanatory power where there is none). The results
of this comparison are summarized in Table 2.

# Model CEXP MIU Match COU Match
(a) E1 ←− H −→ E2 > 0 < 0 × > 0 ✓
(b) E1 −→ H −→ E2 > 0 < 0 × > 0 ✓
(c) H −→ E1 −→ E2 > 0 < 0 × > 0 ✓
(d) E1 −→ E2 −→ H = 0 < 0 ✓ > 0 ×
(e) H ←− E1 −→ E2 = 0 < 0 ✓ > 0 ×
(f) E1 −→ H ←− E2 = 0 ≤ 0 ≤ × ≤ 0 ≤ ×

Table 2: Relationship of unificatory to explanatory power. A check mark un-
der “Match” indicates that unificatory power (positive vs. negative) indicates
explanatory power (positive vs. zero).

The lesson to be learned from these findings is this: Though Lange (2004) is
right in claiming that MIU cannot account for positive explanatory relevance,
while COU can, a purely probabilistic measure for COU fails to account for
a lack of explanatory relevance. However, Lange explicitly refers to structural
constraints when he claims that “genuinely to unify [e1] and [e2], a theory must
reveal them to have some deep common explanatory basis” (p. 208). So, defin-
ing a measure for COU in purely probabilistic terms might seem inadequate
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in Lange’s view. Contra the measure COU, Lange might argue that not only
explanation, but also unification needs to track causation. In other words: A
measure for COU should first and foremost be a measure of causal unification.
Our discussion so far makes his point explicit and shows that a measure for
COU in purely probabilistic terms such as COU is inadequate. Our investiga-
tion shows, however, not only what is wrong with COU—it also prepares the
grounds for modifying COU by adding a causal structural constraints. We can
define the following measure for causal COU:

Definition 4.1 (causal common origin unification).

CCOU(e1, e2; h) = I(e1, e2)− I(e1, e2|ĥ)

[33] Like in the causal measure for explanatory power discussed before,
assuming that H is decoupled from its causes by a hypothetical intervention
guarantees causation tracking. Now CCOU applied to our six elementary
causal structures leads to the desired result:

Observation 4.2.

CCOU(e1, e2; h) > 0 for structures (a)–(c).
CCOU(e1, e2; h) = 0 for structures (d)–(f).

For our set of elementary structures, the behavior of CCOU ordinally co-
incides with that of CEXP and, thus, provides the result intended by (Lange
2004): Whenever a hypothesis (causally) unifies a body of evidence, it also
(causally) explains this body of evidence.

In order to have a fair comparison of MIU and COU in causal settings, we
introduce a causal version of MIU as well:

Definition 4.2 (causal mutual information unification).

CMIU(e1, e2; h) = I(e1, e2|ĥ)− I(e1, e2)

If we apply this measure to our six basic causal structures, we get the fol-
lowing as a result:

Observation 4.3.

CMIU(e1, e2; h) < 0 for structures (a)–(c).
CMIU(e1, e2; h) = 0 for structures (d)–(f).

At least for the simple causal settings considered so far, this result speaks in
favor of Lange (2004): Though the causal version of MIU turns out to perform
slightly better than the purely probabilistic version, the causal version of COU
stays one step ahead since it is able to correctly indicate explanatory power in
all settings. The results of this comparison are summarized in Table 3.
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# Model CEXP CMIU Match CCOU Match
(a) E1 ←− H −→ E2 > 0 < 0 × > 0 ✓
(b) E1 −→ H −→ E2 > 0 < 0 × > 0 ✓
(c) H −→ E1 −→ E2 > 0 < 0 × > 0 ✓
(d) E1 −→ E2 −→ H = 0 = 0 ✓ = 0 ✓
(e) H ←− E1 −→ E2 = 0 = 0 ✓ = 0 ✓
(f) E1 −→ H ←− E2 = 0 = 0 ✓ = 0 ✓

Table 3: Relationship of causal unificatory to explanatory power.

So far, we have pushed the two views and their corresponding measures as
far as we could, always with the goal in mind to make them as fit as possible to
go hand in hand with explanatory relevance. But as we will see in the next sec-
tion, even the sophisticated causal modifications of the original measures are
ultimately doomed to failure when it comes to the question of their suitability
to correctly indicate explanatory relevance in general.

5 Increasing complexity

To see why CCOU does not always coincide with positive explanatory power
in causal settings, it suffices to slightly increase the complexity of one of the
simple causal structures discussed so far. To this end, let us modify the causal
structure in Figure 1(a) by introducing another causal path connecting E1 and
E2 that does not go through H. Let us further introduce the additional causal
variable X that is a common cause of E1 and E2 lying on this path. The structure
resulting from this is depicted in Figure 3. For convenience, let us label this
structure (a∗).

E1 H E2

X

(a∗)

Figure 3: Causal structure resulting from Figure 1(a) by adding another causal
path connecting E1 and E2

As before, let us assume that X is a binary variable with the two possible
values x, x̄. To stay true to our earlier assumptions, we still limit ourselves to
positive probability distributions and to cases where both pieces of evidence
are independent or depend positively on each other. In order to guarantee
this, we make an assumption for X similar to the ones we made for H before
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in section 3:

Pr(e1|x) > Pr(e1|x̄)
Pr(e2|x) > Pr(e2|x̄)

If we apply our measures CCOU and CEXP to the slightly more complex
structure (a∗) in Figure 3, we get the following as a result:

Observation 5.1.

CCOU(e1, e2; h) > 0 and CCOU(e1, e2; h) < 0 are both compatible with
CEXP(e; h) > 0 for structure (a∗).

The part saying that CCOU(e1, e2; h) > 0 is compatible with CEXP(e; h) >
0 does not come unexpected. CCOU and CEXP would both be positive, for ex-
ample, if Pr(ei|h, x) > Pr(ei|h, x̄), Pr(ei|h̄, x) > Pr(ei|h̄, x̄) (for i ∈ {1, 2}). The
presence of each common cause would push the likelihood of the presence of
each piece of evidence further. Thus, conditioning on h would render the two
pieces of evidence less informative about each other. The other part saying that
CCOU(e1, e2; h) < 0 is compatible with CEXP(e; h) > 0 is a bit more surpris-
ing. CCOU being negative and CEXP being positive can, for example, happen
if H works like a switch for whether E1 and E2 probabilistically depend on each
other: If H takes value h̄, then X has no probabilistic impact on Ei whatsoever,
but if H takes value h, then X’s taking value x increases the probability for both
e1 and e2. For exemplary probability distributions, see the Appendix.

What this shows is that even CCOU which performed so well in the sim-
ple causal structures depicted in Figure 1 does a bad job as an indicator for
explanatory relevance in general. Though we went through all the hassle to in-
crease COU’s performance by further developing it in the image of the causal
variant of EXP, it turns out that neither CCOU nor CMIU are ordinally equiv-
alent with CEXP in all causal scenarios. This result shows that the hope of
philosophers such as Kitcher (1981, 1989) and Lange (2004) that unification
and explanation are intimately connected turns out as an illusion, at least if
unification is understood as a single hypothesis’ ability to render pieces of ev-
idence more or less informative about each other. It is neither the case that
explanation can be analyzed in terms of unification nor that unified pieces of
evidence must have some deep common explanatory basis such as a common
causal ancestor in causal settings. Finally, what can we say about the ongoing
competition between COU and MIU? Recall that one of the main objections
Lange (2004) launched against Myrvold’s (2003; 2017) position was that it can-
not account for explanation, while COU can. Our result takes some wind out of
Lange’s objection by unmasking this seemingly advantage of COU over MIU:
In the end, both views are rather bad in tracking explanatory relevance. [34]
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6 Conclusion

In this paper, we compared two common contemporary views of unification:
mutual information unification (MIU) and common origin unification (COU).
We proposed a probabilistic measure for COU and compared it with Myr-
vold’s (2003; 2017) measure for MIU. We then explored how the two proba-
bilistic measures perform in elementary causal structures and how well they
are suited to account for explanatory power. While MIU underperforms by
providing disunification in too many cases, COU turned out to be way too
permissive. Both probabilistic measures also failed in indicating explanatory
relevance. While MIU does not correctly indicate positive explanatory power
at all, also the probabilistic measure COU is not a reliable indicator for ex-
planatory power, because in some of the basic causal settings it indicates an
explanatory relation where there is none. This shows that unification spelled
out in terms of probabilities alone is a bad indicator for explanatory relevance.

As a next step, we investigated the question of whether unification can track
explanation by considering modifications of both measures of unification that
amend probabilistic features with structural causal constraints. For this pur-
pose, we transformed COU into the causal measure CCOU and MIU into the
causal measure CMIU by implementing an interventionist constraint on both
measures. Though we could detect an improvement for both measures, CCOU
clearly took the upper hand. CCOU succeeded to indicate explanatory rele-
vance in all six of the elementary causal structures considered so far, while
MIU only succeeded in three of these structures. However, this victory of COU
over MIU was only short-lived: Slightly increasing the complexity of the un-
derlying causal structure causes problems also for the measure CCOU. Given
the current debate of unification with MIU and COU as the key approaches in
this field, we conclude that unification and explanation do not go hand in hand
as claimed by several authors (Kitcher 1981, 1989; Lange 2004). In particular,
we have shown that upholding the thesis of a “happy marriage” comes at the
cost of an increased need of modification and parametrization, and, therefore,
has the characteristics of a degenerative research programme.

Appendix

In this appendix we provide proofs for the observations made throughout the
paper. We assume that probability distributions are non-extreme and that
Pr(ei|h) > Pr(ei|h̄) for i ∈ 1, 2. Due to these assumptions the denominators
in Definition 2.1 are positive and, thus, COU(e1, e2; h) and MIU(e1, e2; h) are
always defined.

Observation 2.1 follows trivially from Definitions 2.2 and 2.3, Observa-
tion 2.2 follows trivially from Observation 2.1, and Observation 4.3 follows
trivially from Definitions 4.1 and 4.2 and Observation 4.2.
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Observation 3.1.

MIU(e1, e2; h) < 0 < COU(e1, e2; h) for structures (a)–(e).
MIU(e1, e2; h), COU(e1, e2; h) are lesser, equal, or greater 0 for structure (f).

Proof.

Structure (a): From Equation 4 applied to structure (a) it follows that e1 and
e2 are positively dependent, meaning that Pr(e1, e2) > Pr(e1) · Pr(e2). From
Definition 2.1 it then follows that I(e1, e2) > 0. From Equation 4 applied to
structure (a) it also follows that Pr(e1, e2|h) = Pr(e1|h) · Pr(e2|h). From Defi-
nition 2.1 it then follows that I(e1, e2|h) = 0. Because I(e1, e2) > I(e1, e2|h), it
follows from Definitions 2.2 and 2.3 that MIU(e1, e2; h) < 0 < COU(e1, e2; h).

Structure (b): Since structure (b) is probabilistically indistinguishable from
structure (a),11 the purely probabilistic measures MIU and COU perform ex-
actly as in structure (a). Thus, MIU(e1, e2; h) < 0 < COU(e1, e2; h).

Structure (c): Since e1 and e2 are both positively depend on h and the struc-
ture is H −→ E1 −→ E2, Equation 4 rules that also e2 depends positively
on e1 unconditionally. Because of this, I(e1, e2) will be positive. For the same
reasons, e1 and e2 will also be positively dependent conditional on h, except
Pr(e1|h) = 1, in which case e1 and e2 will be independent conditional on h.
Hence, I(e1, e2; h) ≥ 0. Now if we conditionalize on h, the probabilities for each
piece of evidence as well as for their conjunction are pushed upwards such that
Pr(e1, e2) compared to Pr(e1) · Pr(e2) becomes smaller. But this means that the
two pieces of evidence become less informative about each other and, thus,
that I(e1, e2) > I(e1, e2|h). It then follows from Definitions 2.2 and 2.3 that
MIU(e1, e2; h) < 0 < COU(e1, e2; h).

Structures (d) and (e): Since these structures are probabilistically indistinguish-
able from structure (c), the purely probabilistic measures MIU and COU per-
form exactly as in structure (c). Thus, MIU(e1, e2; h) < 0 < COU(e1, e2; h).

Structure (f): To show that both MIU and COU each can be lesser, equal, or
grater 0 we provide three exemplary probability distributions Pr1, Pr2, Pr3.
[35] All three distributions are positive distributions conforming to the Markov
factorization. All three also satisfy the constraint that Pr(ei|h) > Pr(ei|h̄) for
i ∈ {1, 2}.

# Pr(e1) Pr(e2) Pr(h|e1, e2) Pr(h|e1, ē2) Pr(h|ē1, e2) Pr(h|ē1, ē2)

Pr1 0.5 0.5 1 1 1 0
Pr2 0.5 0.5 1 0 0 0
Pr3 0.5 0.5 1 0.5 0.5 0.5

11This means that any distribution conforming to Equation 4 applied to structure (a) will also
conform to Equation 4 applied to structure (b), and vice versa.
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From these parameters we get (numbers are rounded to three digits):

MIU = −0.415 < 0 < 0.415 = COU for Pr1

MIU = 0 = COU for Pr2

MIU = 0.152 > 0 > 0.152 = COU for Pr3

Observation 4.1.

CEXP(e; h) > 0 for structures (a)–(c).
CEXP(e; h) = 0 for structures (d)–(f).

Proof.

Structure (a): For this case, the post intervention distribution is identical to the
pre intervention distribution. Now Equation 4 implies:

Pr(e1, e2|h) = Pr(e1|h) · Pr(e2|h)
Pr(e1, e2) = Pr(e1|h) · Pr(e2|h) · Pr(h) + Pr(e1|h̄) · Pr(e2|h̄) · Pr(h̄)

The latter is a weighted average. From Pr(ei|h) > Pr(ei|h̄) (for i ∈ {1, 2})
we know that the upper bound of the weighted average isPr(e1|h) · Pr(e2|h)
and that its lower bound is Pr(e1|h̄) · Pr(e2|h̄). Since we only consider positive
distributions, we also know that the weight Pr(h) is not 1. From this and the
equations above it follows that Pr(e1, e2|h) > Pr(e1, e2), meaning that h and e
are positively dependent. Thus, CEXP is positive.

Structure (b): Equation 4 applied to the post intervention graph gives us:

Pr(e1, e2|h) = Pr(e1) · Pr(e2|h)
Pr(e1, e2) = Pr(e1) · Pr(e2|h) · Pr(h) + Pr(e1) · Pr(e2|h̄) · Pr(h̄)

Again, the latter is a weighted average and from Pr(e2|h) > Pr(e2|h̄) we
know that Pr(e1) · Pr(e2|h) is its upper bound and Pr(e1) · Pr(e2|h̄) its lower
bound. Again, by assumption the weight Pr(h) cannot be 1 and, hence,
Pr(e1, e2|h) > Pr(e1, e2) follows. Thus, h and e are positively dependent and
CEXP is positive.

Structure (c): For this case, the post intervention distribution is again identical
to the pre intervention distribution. Equation 4 implies:

Pr(e1, e2|h) = Pr(e1|h) · Pr(e2|e1)

Pr(e1, e2) = Pr(e1|h) · Pr(e2|e1) · Pr(h) + Pr(e1|h̄) · Pr(e2|e1) · Pr(h̄)

Again, the latter is a weighted average and from Pr(e1|h) > Pr(e1|h̄) we know
that Pr(e1|h) · Pr(e2|e1) is its upper bound and Pr(e1|h̄) · Pr(e2|e1) its lower
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bound. Since the weight Pr(h) cannot be 1 by assumption, it follows that
Pr(e1, e2|h) > Pr(e1, e2). Thus, h and e are positively dependent and CEXP
is positive.

Structures (d)–(f): For all three post intervention structures, Equation 4 rules
that h is probabilistically independent of e. Because of this and since we con-
sider only positive distributions, the numerator in Equation 7 determining
CEXP will be 0 and the denominator will be greater than 0. Hence, CEXP
will be 0.

Observation 4.2.

CCOU(e1, e2; h) > 0 for structures (a)–(c).
CCOU(e1, e2; h) = 0 for structures (d)–(f).

Proof.

Structures (a) and (c): In both cases the intervention does not break any arrows.
Hence, the post intervention distribution will be identical to the pre interven-
tion distributions and CCOU and COU coincide. And since we already know
that COU > 0, we also know that CCOU > 0.

Structure (b): We already know that e1 and e2 are positively dependent in
the pre intervention distribution. Thus, I(e1, e2) > 0. For the post inter-
vention, however, Equation 4 rules that e1 and e2 are independent condi-
tional on h. Hence, I(e1, e2|ĥ) = 0. From Definition 4.1 it then follows that
CCOU(e1, e2; h) > 0.

Structures (d) and (e): Equation 4 applied to the two structures’ pre intervention
graphs gives us:

Pr(e1) = Pr(e1)

Pr(e2) = Pr(e2|e1) · Pr(e1) + Pr(e2|ē1) · Pr(ē1)

Pr(e1, e2) = Pr(e2|e1) · Pr(e1)

[36] These are the probabilities that determine I(e1, e2). Applied to the post
intervention graphs, Equation 4 gives us:

Pr(e1|h) = Pr(e1)

Pr(e2|h) = Pr(e2|e1) · Pr(e1) + Pr(e2|ē1) · Pr(ē1)

Pr(e1, e2|h) = Pr(e2|e1) · Pr(e1)

These are the probabilities that determine I(e1, e2|ĥ). It then follows from
Definition 2.1 that I(e1, e2) = I(e1, e2|ĥ) and, thus from Definition 4.1 that
CCOU(e1, e2; h) = 0.
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Structure (f): Equation 4 applied to the pre intervention graph tells us that e1
and e2 are independent. Hence, I(e1, e2) = 0. Applied to the post intervention
graph the same equation implies that e1 and e2 are independent conditional
on h and, thus, that I(e1, e2|ĥ) = 0 holds. It follows from Definition 4.1 that
CCOU(e1, e2; h) = 0.

Observation 5.1.

CCOU(e1, e2; h) > 0 and CCOU(e1, e2; h) < 0 are both compatible with
CEXP(e; h) > 0 for structure (a∗).

Proof.

To show that CCOU(e1, e2; h) > 0 and CCOU(e1, e2; h) < 0 are both compatible
with CEXP(e; h) > 0 for structure (a∗), we provide two exemplary probability
distributions Pr1, Pr2. Both distributions are positive distributions conforming
to the Markov factorization. Both also satisfy the constraints that Pr(ei|h) >
Pr(ei|h̄) and Pr(ei|x) > Pr(ei|x̄) for i ∈ {1, 2}.

# Pr(h) Pr(x) Pr(ei|h, x) Pr(ei|h, x̄) Pr(ei|h̄, x) Pr(ei|h̄, x̄)
Pr1 0.5 0.5 0.8 0.5 0.5 0.2
Pr2 0.5 0.5 0.8 0.5 0.5 0.5

From these parameters we get (numbers are rounded to three digits):

CCOU(e1, e2; h) = 0.164 and CEXP(e; h) = 0.314 for Pr1

CCOU(e1, e2; h) =− 0.003 and CEXP(e; h) = 0.202 for Pr2
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